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Abstract—Communication over the i.i.d. Rayleigh slow-fading
MAC is considered, where all terminals are equipped with a
single antenna. Further, a communication protocol is considered
where all users transmit at (just below) the symmetric capacity
(per user) of the channel, a rate which is fed back (dictated) to
the users by the base station. Tight bounds are established on the
distribution of the rate attained by the protocol. In particular,
these bounds characterize the probability that the dominant
face of the MAC capacity region contains a symmetric rate
point, i.e., that the considered protocol strictly attains the sum
capacity of the channel. The analysis provides a non-asymptotic
counterpart to the diversity-multiplexing tradeoff of the multiple
access channel. Finally, a practical scheme based on integer-
forcing and space-time precoding is shown to be an effective
coding architecture for this communication scenario.

I. INTRODUCTION

The problem of communication over the slow (block) fading

Rayleigh multiple access channel (MAC) is addressed, where

all nodes are equipped with a single antenna. Specifically, the

performance of a simple protocol is considered, where all users

transmit at a rate just below the symmetric capacity (per user)

of the channel. The underlying assumption is that the latter rate

is dictated to the users by the base station, utilizing a minimal

amount of feedback. It will be shown that such a protocol is

quite effective in terms of the fraction of capacity achieved.

The analysis is largely based on the approach developed in the

recent work [1].

Some insight into the performance of the protocol may be

obtained by considering the diversity-multiplexing trade-off

(DMT) of the channel. Specifically, the DMT of the Rayleigh

MAC was studied in [2]. As a special case, the scenario where

all users transmit at the same rate was highlighted and a simple

expression for the DMT in this case was derived.

Although the DMT analysis is asymptotic in nature, instruc-

tive lessons may nonetheless be drawn from it. First, it is

clear that in the limit of high SNR, the ratio of the symmetric

capacity and sum capacity approaches one. More importantly,

the analysis of the typical error events in the Rayleigh-

fading MAC reveals that with high probability (again, at high

SNR) outage occurs either due to the sum capacity being the

bottleneck or a single user being the bottleneck [2]. That is, for

the scalar MAC with symmetric rate transmission, the DMT

is the intersection of only two lines, see Figure 1.

This in turn suggests that in the protocol considered, where

the sum capacity is given, the bottleneck will correspond to
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Fig. 1. DMT curve for a four-user Rayleigh fading MAC.

a single-user constraint. The analysis to follow, characterizing

the distribution of the rate attained by the transmission proto-

col, will indeed establish this intuition. We further characterize

the probability that the dominant face of the MAC capacity

region contains a symmetric-rate point, i.e., the probability that

the scheme strictly attains the sum capacity of the channel.

The analysis provides a non-asymptotic counterpart to the

diversity-multiplexing tradeoff of the MAC and will serve to

obtain tight bounds on the average throughput of the described

protocol. The latter turns out to be quite close to the average

sum capacity.

As a candidate practical scheme, it is shown that the integer-

forcing receiver combined with space-time precoding performs

well in the considered scenario.

II. PROBLEM FORMULATION AND PRELIMINARIES

The channel is described by

y =

N
∑

i=1

hixi + n (1)

where hi ∼ CN (0, SNR) and n ∼ CN (0, 1), and where

there is no statistical dependence between any of these random

variables. Without loss of generality we assume throughout the

analysis to follow that the signal xi of each user satisfies a
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power constraint of 1, i.e., the SNR is absorbed in the channel

gains.

The capacity region of the channel is given by (see, e.g.,

[3]) all rate vectors (R1, . . . , RN ) satisfying the constraints

∑

i∈S

Ri < log

(

1 +
∑

i∈S

|hi|2
)

, (2)

for all S ⊆ {1, 2, . . . , N}. We denote the sum capacity by

C = log

(

1 +

N
∑

i=1

|hi|2
)

. (3)

If we impose the constraint that all users transmit at the

same rate, then the maximal achievable rate is given by

substituting Ri = Csym/N in (2), from which it follows that

the symmetric capacity is dictated by the bottleneck:

Csym = min
S⊆{1,2,...,N}

N

|S| log
(

1 +
∑

i∈S

|hi|2
)

. (4)

We next analyze the conditional “cumulative distribution

function”

Pr(Csym < R|C) (5)

for i.i.d. Rayleigh fading.1 The latter quantity provides a

full statistical characterization for the performance of the

transmission protocol considered. Another interpretation of (5)

is as a conditional outage probability in an open-loop scenario.

That is, in a scenario where all users (when they are active)

transmit at a common target rate R. For a given number

of active users N , the outage probability is then given by

E[Pr(Csym < N ·R|C)] where the expectation is over C and

is computed w.r.t. an i.i.d. Rayleigh distribution.

III. TWO-USER I.I.D. RAYLEIGH FADING MAC

We start by analyzing the simplest case of a two-user MAC,

for which we obtain an exact of characterization of (5).

Theorem 1. For a two-user i.i.d. Rayleigh fading MAC with

sum capacity C, for any rate R ≤ C,

Pr(Csym < R|C) = 2 · 2
R/2 − 1

2C − 1
. (6)

Proof. Given C, h , (h1, h2) is uniformly distributed over a

two-dimensional complex sphere of radius
√
2C − 1. Hence,

h/‖h‖ can be viewed as the first row of a random (Haar)

unitary matrix U.

By (4) we obtain

Csym = min {C({1}), C({2}), C} . (7)

We start by analyzing C({1}), which is given by

C({1}) = 2 log
(

1 + |h1|2
)

= 2 log
(

1 + |U1,1|2(2C − 1)
)

. (8)

1We use quotation marks since we impose strict inequality in Csym < R.

It follows that

Pr(C({1}) < R|C) = Pr

(

|U1,1|2 <
2R/2 − 1

2C − 1

)

(9)

= Pr

(

|U1,1|2 ∈
[

0,
2R/2 − 1

2C − 1

))

(10)

Since (see, e.g., [4]) for a 2× 2 matrix drawn uniformly with

respect to the Haar measure, we have |U1,1|2 ∼ Unif([0, 1]),
we obtain

Pr(C({1}) < R|C) =
2R/2 − 1

2C − 1
. (11)

Now, since U1,1 and U1,2 are the elements of a row in a

unitary matrix, we have

|U1,1|2 + |U1,2|2 = 1. (12)

Hence,

Pr(C({2}) < R|C) = Pr

(

|U1,2|2 <
2R/2 − 1

2C − 1

)

= Pr

(

1− |U1,1|2 <
2R/2 − 1

2C − 1

)

= Pr

(

|U1,1|2 ∈
(

1− 2R/2 − 1

2C − 1

])

(13)

Since for any rate R ≤ C, the intervals appearing in (10)

and (13) are disjoint and of the same length, it follows that

Pr(Csym < R|C) = 2 · 2
R/2 − 1

2C − 1
. (14)

We note that the probability in (14) is strictly smaller than

1 at R = C. Thus, the probability that the symmetric capacity

coincides with the sum capacity is strictly positive.

Figure 2 depicts the capacity region for three different

channel realizations for which the sum capacity equals 2. The

probability that the symmetric capacity coincides with the sum

capacity amounts to the probability that the symmetric rate line

passes through the dominant face of the capacity region and

is given by

Pr (Csym = C|C) = 1− Pr (Csym < C|C)

= 1− 2 · 2
C/2 − 1

2C − 1
. (15)

As an example, for C = 2, this probability is 1/3.

Figure 3 depicts the probability density function of the

symmetric capacity of a two-user i.i.d. Rayleigh fading MAC

given that the sum capacity is C = 2. The probability in (15)

manifests itself as a delta function at the sum capacity.

IV. EXTENSION TO N -USER I.I.D. RAYLEIGH FADING

MAC (N ≥ 2)

Theorem 1 may be extended to the case of N > 2 users.

However, rather than obtaining an exact characterization of the

distribution of the symmetric capacity, we will now be content
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Fig. 2. Different capacity regions corresponding to a two-user MAC with
sum capacity C = 2. For the channel depicted with a dashed-dotted line, the
dominant face constitutes the bottleneck and Csym = C.
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Fig. 3. Probability density function of the symmetric capacity of a two-user
i.i.d. Rayleigh fading MAC given that the sum capacity is C = 2.

with deriving lower and upper bounds for it. We begin with

the following lemma from which Theorem 2 follows.

Lemma 1. For an N -user i.i.d. Rayleigh fading MAC with

sum capacity C, and for any subset of users S ⊆ {1, 2, . . . , N}
with cardinality k, we have

Pr (C({S}) < R|C) =
B( 2R|S|/N−1

2C−1
; |S|, N − |S|)

B(1; |S|, N − |S|)
, Pout(k,R|C) (16)

where 0 ≤ R ≤ C and

B(x; a, b) =
∫ x

0

ua−1(1− u)b−1du (17)

is the incomplete beta function.

Proof. Similar to the case of two users, h , (h1, . . . , hN ) is

uniformly distributed over an N -dimensional complex sphere

of radius
√
2C − 1 and hence h/‖h‖ may be viewed as the

first row of a unitary matrix U drawn at random according to

the Haar measure.

By symmetry, for any set S with cardinally k, the distribu-

tion of C({S}) is equal to that of

C({1, 2, . . . , k}) = N

k
log

(

1 +
k
∑

i=1

|hi|2
)

=
N

k
log

(

1 +
(

2C − 1
)

k
∑

i=1

|U1,i|2
)

.

(18)

Denoting the partial sum of k entries as X =

k
∑

i=1

|U1,i|2,

we therefore have

Pr(C({S}) < R|C) = Pr
(

1 +
(

2C − 1
)

X < 2R
N
k

)

= Pr

(

X <
2R

N
k − 1

2C − 1

)

. (19)

We note that the vector (|U1,1|2, . . . , |U1,N |2) follows the

Dirichlet distribution and a partial sum of its entries has a

Jacobi (also referred to as MANOVA) distribution. To see this,

we note that (18) can be written as

C({1, 2, . . . , k}) = N

k
log
(

1 + (2C − 1)U(k)1U(k)H1
)

(20)

where U(k)1 is a vector which contains the first k elements

of the first row of U. Noting that since U(k)1 is a submatrix

of a unitary matrix, its singular values follow (see, e.g., [5])

the Jacobi distribution, and more specifically, X has Jacobi

distribution with rank 1. We thus obtain

Pr (C({S}) < R|C) =

∫
2
Rk/N−1

2C−1

0

xk−1xN−k−1dλ

=
B( 2Rk/N−1

2C−1
; k,N − k)

B(1; k,N − k)
,

where B(x; a, b) is the incomplete beta function defined in

(17).

Theorem 2. For an N -user i.i.d. Rayleigh MAC, we have

max
k

Pout(k,R|C) ≤ Pr (Csym < R|C) (21)

≤
N
∑

k=1

(

N

k

)

Pout(k,R|C),

where Pout(k,R|C) is defined Lemma 1.

Proof. To establish the left hand side of the theorem, first note

that Csym ≤ C({S}) for any subset S and hence

Csym ≤ min
k

C({1, 2, . . . , k}). (22)
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Fig. 4. Demonstration of the quantities appearing in the bounds appearing
in Theorem 2 for the case of a 4-user i.i.d. Rayleigh fading MAC with sum
capacity C = 8.

It follows that

Pr
(

Csym < R
∣

∣

∣
C
)

≥ Pr

(

min
k

C({1, 2, . . . , k}) < R
∣

∣

∣
C

)

= Pr

(

⋃

k

{C({1, 2, . . . , k}) < R}
∣

∣

∣
C

)

≥ max
k

Pr
(

C({1, 2, . . . , k}) < R
∣

∣

∣
C
)

= max
k

Pout(k,R|C). (23)

The right hand side follows by the union bound.

Figures 4 and 5 illustrate the theorem for the case of four

users. As can be seen from Figure 4, already at not very

high values of capacity, the single-user constraints already

constitute the bottleneck. We further observe from Figure 5

that the union bound is quite tight.

V. PRACTICAL REALIZATION OF THE COMMUNICATION

PROTOCOL VIA PRECODED INTEGER FORCING

In this section we empirically demonstrate the effectiveness

of the integer-forcing (IF) receiver when used in conjunction

with space-time precoding as a practical transmission scheme

for the considered communication protocol. Due to space

limitations, we refer the reader to [6] for a description of the

integer forcing framework and its implementation.

When it comes to fading channels, it has been shown in [6]

that the IF receiver achieves the DMT over i.i.d. Rayleigh

fading channels where the number of receive antennas is

greater or equal to the number of transmit antennas.

We observe that this does not hold in the general case;

in particular, IF does not achieve the DMT for the case

of a MAC where all terminals are equipped with a single

antenna. Specifically, Figure 6 depicts (in logarithmic scale)

the empirical outage probability of the IF receiver and the

exact outage probability for optimal communication (Gaussian
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Fig. 5. Comparison of empirical evaluation of (4) and Theorem 5 (upper and
lower bounds for the outage probability) for a 4-user i.i.d. Rayleigh fading
MAC with sum capacity C = 8.

codebooks and ML decoding), as given by Theorem 1, for

the two-user i.i.d. Rayleigh fading MAC. The symmetric rate

achieved by a given scheme is denoted by Rscheme.

It is evident that the slopes are different. This raises the

question of whether IF is inherently ill-suited for the MAC

channel. A negative answer to this question may be inferred

by recalling some further lessons from the DMT analysis of

the MAC.

While the optimal DMT for the i.i.d. Rayleigh fading MAC

was derived in [2] using Gaussian codebooks of sufficient

length, it was subsequently shown that the MAC DMT can be

achieved using structured codebooks by combining uncoded

QAM constellations with space-time unitary precoding (and

ML decoding). Specifically, such a MAC-DMT achieving

construction is given in [7]. This raises the possibility that

the sub-optimality of the IF receiver observed in Figure 6

may at least in part be remedied by applying unitary space-

time precoding at each of the transmitters. We note that each

transmitter applies precoding only to its own data streams so

the distributed nature of the problem is not violated.

Following this approach, we have implemented the IF

receiver with unitary space-time precoding applied at each

transmitter. We have employed random (Haar) precoding (with

independent matrices drawn for the different users) over two

(T = 2) time instances as well as deterministic precoding

using the matrices proposed in [8].2

These matrices can be expressed as

P
1
st,c =

1√
5

[

α αφ
ᾱ ᾱφ̄

]

, P
2
st,c =

1√
5

[

jα jαφ
ᾱ ᾱφ̄

]

(24)

2When using an ML receiver, this space-time code is known to achieve
the DMT for multiplexing rates r ≤ 1

5
. As detailed in [7], whether this code

achieves the optimal MAC-DMT also when r >
1
5

remains an open question.
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where

φ =
1 +

√
5

2
, φ̄ =

1−
√
5

2
α = 1 + j − jφ, ᾱ = 1 + j − jφ̄. (25)

We also replot Figure 6 in terms of PDF (rather than CDF)

as Figure 7, but without random Haar space-time precoding

(so as to avoid “clutter”). As can be seen, the precoding

matrices in (24) improve the outage probability for most

target rates.

We further note that in addition to standard IF, we also

implemented a variant that incorporates successive interference

cancellation, referred to as IF-SIC [9]. As can be seen, IF-SIC

results in a significant improvement for all precoding schemes
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codebooks with ML decoding, over a two-user normalized (conditioned) i.i.d.
Rayleigh fading MAC.

used.

In Figure 8 we study the average symmetric rate achieved

by different schemes w.r.t. a two-user i.i.d. Rayleigh fading

channel when we condition on the sum capacity of the channel.

We plot the fraction of the sum capacity attained by the various

schemes. We first observe that IF-SIC combined with space-

time precoded linear codes achieves a large fraction of the

symmetric capacity. Further, as can be seen, the fraction of the

sum capacity achieved by all the different schemes considered

approaches one as the sum capacity grows.
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